首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   41篇
  2023年   3篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   10篇
  2018年   15篇
  2017年   13篇
  2016年   14篇
  2015年   26篇
  2014年   41篇
  2013年   43篇
  2012年   60篇
  2011年   55篇
  2010年   27篇
  2009年   16篇
  2008年   27篇
  2007年   23篇
  2006年   29篇
  2005年   20篇
  2004年   18篇
  2003年   13篇
  2002年   11篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1992年   11篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   8篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1970年   2篇
  1967年   4篇
  1966年   2篇
排序方式: 共有642条查询结果,搜索用时 265 毫秒
101.
A new immobilization chemistry for covalent attachment of phosphorylated oligonucleotides on epoxy-activated glass surface via opening of oxirane ring is described. The proposed strategy results in excellent immobilization efficiency, spot homogeneity, and morphology. The constructed microarray was successfully demonstrated for discrimination of nucleotide mismatches.  相似文献   
102.
The metabolites of the tryptase inhibitor CRA-9249 were identified after exposure to liver microsomes. CRA-9249 was found to be degraded rapidly in liver microsomes from rabbit, dog, cynomolgus monkey, and human, and less rapidly in microsomes from rat. The key metabolites included cleavage of an aryl ether, in addition to an unexpected hydroxylation of the amide side chain adjacent to the amide nitrogen. The chemical structures of both metabolites were confirmed by synthesis and comparison to material isolated from the liver microsomes. Several suspected hydroxylated metabolites were also synthesized and analyzed as part of the structure identification process.  相似文献   
103.
The present study was carried out to assess the role of androgen receptor CAG repeat polymorphism and X chromosome inactivation (XCI) pattern among Indian PCOS women and controls which has not been hitherto explored and also to test the hypothesis that shorter CAG alleles would be preferentially activated in PCOS. CAG repeat polymorphism and X chromosome methylation patterns were compared between PCOS and non-PCOS women. 250 PCOS women and 299 controls were included for this study. Androgen receptor CAG repeat sizes, XCI percentages, and clinical and biochemical parameters were measured. The mean CAG repeat number is similar between the cases (18.74±0.13) and controls (18.73±0.12). The obese PCOS women were significantly more frequent in the <18 and >20 CAG repeat category than the lean PCOS women, yielding a highly significant odds (p = 0.001). Among the women with non-random X-inactivation, alleles with <19 repeats were more frequently activated among cases than controls (p = 0.33). CAG repeat polymorphism by itself cannot be considered as a useful marker for discriminating PCOS. We observed a trend of preferential activation of the shorter allele among the PCOS cases with non random XCI pattern. In the obese PCOS women, this microsatellite variation may account for the hyperandrogenicity to a larger extent than the lean PCOS women.  相似文献   
104.
The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.  相似文献   
105.
Molecular epidemiology studies have used the counts of different mutational types like transitions, transversions, etc. to identify putative mutagens, with little reference to gene organization and structure–function of the translated product. Moreover, geographical variation in the mutational spectrum is not limited to the mutational types at the nucleotide level but also have a bearing at the functional level. Here, we developed a novel measure to estimate the rate of spontaneous detrimental mutations called “mutation index” for comparing the mutational spectra consisting of all single base, missense, and non-missense changes. We have analyzed 1609 mutations occurring in 38 exons in 24 populations in three diseases viz. hemophilia B (F9 gene – 420 mutations in 9 populations across 8 exons), hemophilia A (F8 gene – 650, 8 and 26, respectively) and ovarian carcinoma (TP53 gene – 539, 7 and 4, respectively). We considered exons as units of evolution instead of the entire gene and observed feeble differences among populations implying lack of a mutagen-specific effect and the possibility of mutation causing endogenous factors. In all the three genes we observed elevated rates of detrimental mutations in exons encoding regions of significance for the molecular function of the protein. We propose that this can be extended to the entire exome with implications in exon-shuffling and complex human diseases.  相似文献   
106.
107.
A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157.  相似文献   
108.
Atypical antipsychotic drugs, such as clozapine and risperidone, have a high affinity for the serotonin 5-HT(2A) G protein-coupled receptor (GPCR), the 2AR, which signals via a G(q) heterotrimeric G protein. The closely related non-antipsychotic drugs, such as ritanserin and methysergide, also block 2AR function, but they lack comparable neuropsychological effects. Why some but not all 2AR inhibitors exhibit antipsychotic properties remains unresolved. We now show that a heteromeric complex between the?2AR and the G(i)-linked GPCR, metabotropic glutamate 2 receptor (mGluR2), integrates ligand input,?modulating signaling output and behavioral changes. Serotonergic and glutamatergic drugs bind the mGluR2/2AR heterocomplex, which then balances Gi- and Gq-dependent signaling. We find that the mGluR2/2AR-mediated changes in Gi and Gq activity predict the psychoactive behavioral effects of a variety of pharmocological compounds. These observations provide mechanistic insight into antipsychotic action that may advance therapeutic strategies for disorders including schizophrenia and dementia.  相似文献   
109.
Stem bromelain (SBM) is a therapeutic protein that has been studied for alkaline denaturation in the intestines, the principal site of its absorption. In this study, we investigated fluorinated alcohol 2,2,2-trifluoroethanol (TFE)-induced conformational changes in the specific/pre-molten globule (SMG) state of SBM observed at pH 10 by spectroscopic methods. Far-UV circular dichroism (CD) spectra showed that the protein retained its native-like secondary structure at TFE concentrations of up to 30% with a pronounced minimum at 222 nm, characteristic of a helix. However, addition of slightly higher TFE concentrations (≥40%) resulted in an ∼2.5-fold induction of this helical feature and a time-dependent increase in non-amyloidic turbidity as evidenced by turbidometric, Congo red-binding, and Thioflavin T (ThT)-binding studies. Near-UV CD spectra suggested a gradual but significant loss of tertiary structure at 10-30% TFE. Tryptophan studies showed blue-shifted fluorescence, although the number of accessible tryptophans remained the same up to 30% TFE. The SMG showed enhanced binding of the fluorescent probe 1-anilino-8-naphthalene sulfonic acid (ANS) up to 30% TFE, beyond which binding plateaued. Thermal and guanidine hydrochloride (GdnHCl) transition studies in the near-UV range indicated a single cooperative transition for the SMG state in the presence of 30% TFE, similar to that observed for native SBM at pH 7.0 (although with different Tms), unlike the SMG state. TFE (30%) appeared to induce native-like stability to the original SMG. These observations suggest a transformation of the SMG to a characteristic molten globule (MG) conformation at 30% TFE, possibly due to TFE-induced rearrangement of hydrophobic interactions at the protein's isoelectric point.  相似文献   
110.
Type 2 diabetes mellitus is a complex disorder with a strong genetic component. Inherited complex disease susceptibility in humans is most commonly associated with single nucleotide polymorphisms. The mechanisms by which this occurs are still poorly understood. Here we focus on analyzing the effect of a set of disease-causing missense variations of the monogenetic form of Type 2 diabetes mellitus and a set of disease-associated nonsynonymous variations in comparison with that of nonsynonymous variations without any experimental evidence for association with any disease. Analysis of different properties such as evolutionary conservation status, solvent accessibility, secondary structure, etc. suggests that disease-causing variations are associated with extreme changes in the value of the parameters relating to evolutionary conservation and/or protein stability. Disease-associated variations are rather moderately conserved and have a milder effect on protein function and stability. The majority of the genes harboring these variations are clustered in or near the insulin signaling network. Most of these variations are identified as potential sites for post-translational modifications; certain predictions have already reported experimental evidence. Overall our results indicate that Type 2 diabetes mellitus may result from a large number of single nucleotide polymorphisms that impair modular domain function and post-translational modifications involved in signaling. Our emphasis is more on conserved corresponding residues than the variation alone. We believe that the approach of considering a stretch of peptide sequence involving a polymorphism would be a better method of defining the role of the polymorphism in the manifestation of this disease. Because most of the variations associated with the disease are rare, we hypothesize that this disease is a "mosaic model" of interaction between a large number of rare alleles and a small number of common alleles along with the environment, which is little contrary to the existing common disease common variant model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号